Типы химической связи. Ковалентная химическая связь Полярность и энергия связи ковалентной связи

Длиной ковалентной связи называют расстояние между ядрами атомов, которые образуют связь. Длина связи напрямую связана с радиусом атома - чем он больше, тем длиннее связь.

Значения ковалентных радиусов некоторых атомов (пм; 10 -12 м):

  • H = 30 пм;
  • F = 58;
  • O = 73;
  • N = 75;
  • C = 77;
  • Cl = 99;
  • S = 103;
  • P = 110;
  • Si = 118;
  • Al = 130.

В симметричных молекулах (H 2 , F 2 , Cl 2 ...) половину длины связи называют ковалентным радиусом . Зная ковалентный радиус, очень легко вычислять длину ковалентной связи в молекуле. Например, длина ковалентной связи молекулы HF = 30 + 58 = 88 пм.

2. Энергия ковалентной связи

Под энергией ковалентной связи (выражают в ккал/моль или кДж/моль) обычно понимают энергию, которая необходима для разрыва связи (при образовании ковалентной связи энергия выделяется, при разрыве - поглощается). Чем выше энергия связи, тем прочнее связь.

Энергия связи зависит от ее длины - чем длиннее связь в молекуле, тем проще ее разорвать (затратить меньше энергии).

Энергии связи некоторых молекул (кДж/моль):

  • H 2 = 453 (длина связи = 60 пм);
  • Cl 2 = 242 (198 пм);
  • HCl = 431 (129 пм).

3. Полярность ковалентной связи

Данная характеристика отображает расположение электронной пары двух атомов, образующих связь. Степень полярности связи зависит от величины электроотрицательности атомов, образующих связь (чем она больше, тем больше полярность связи). У более полярной ковалентной связи общая пара электронов больше смещена к более электроотрицательному атому (см. понятие электроотрицательности).

Электроотрицателность является табличной величиной, определяемой по шкале Поллинга. Гораздо более важно знать не саму электроотрицательность атома как таковую, но разницу этих значений в молекуле - какой из атомов более электроотрицателен, а какой менее.

Полярность ковалентной связи оценивается количественно при помощи дипольного момента (µ), при этом система из двух равнозначных, но противоположных по знаку, зарядов, называется диполем .

Очень важно различать дипольный момент ковалентной связи (ее полярность) и дипольный момент молекулы в целом. В простых двухатомных молекулах эти два параметра равны между собой. Совсем другая картина наблюдается в сложных молекулах, в которых дипольный момент молекулы складывается из суммы векторов дипольных моментов отдельных связей.

4. Поляризуемость ковалентной связи

Поляризуемость отображает степень способности электронов смещаться под воздействием внешнего электрического поля, формируемого ионами или другими полярными молекулами.

Поляризуемость ковалентной связи прямо пропорциональна ее длине, что, в общем-то, логично - чем дальше от ядра атома находится электрон, тем он слабее им притягивается, поэтому, легче смещается при внешнем воздействии на него. Таким образом, с увеличением длины связи происходит увеличение ее поляризуемости, что, в свою очередь, приводит к возрастанию силы кислот (например, йодистоводородная кислота сильнее фтороводородной).

Поляризуемость и полярность связи являются обратнозависимыми величинами: менее полярная связь больше поляризуется, и наоборот.

5. Насыщаемость ковалентной связи

Насыщаемостью называют способность атома образовывать определенное кол-во ковалентных связей - в образовании связи стремятся принять участие все "неспаренные" электроны атома. Например, атом водорода имеет только один неспаренный электрон, а атом азота - три. По этой причине наиболее устойчивым химическим соединением будет NH 3 , но не NH или NH 2 .

6. Направленность ковалентной связи

Направленность характеризует пространственную ориентацию ковалентной связи относительно других связей молекулы. В молекулах электроны ковалентных связей и свободные пары электронов постоянно испытывают взаимное отталкивание в результате чего ковалентные связи располагаются так, что валентный угол между ними отвечает принципу наименьшего отталкивания между электронами (например, в молекуле воды валентный угол составляет 104,5°).

7. Кратность ковалентной связи

В некоторых случаях между атомами могут возникать не одна, а две (двойная связь) или три (тройная связь) общих электронных пар (так называемые кратные связи).

Двойная ковалентная связь образуется у атомов, имеющих по два неспаренных электрона; тройная - у атомов, имеющих по три неспаренных электрона (см. Множественные связи).

Как видно из таблицы, приведенной ниже, молекула азота примерно в 7 раз "крепче" молекулы фтора.

Таблица зависимости длины и прочности ковалентной связи от ее кратности.

Определение

Ковалентной связью называется химическая связь, образующаяся за счёт обобществления атомами своих валентных электронов. Обязательным условием образования ковалентной связи является перекрывание атомных орбиталей (АО), на которых расположены валентные электроны. В простейшем случае перекрывание двух АО приводит к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО. Обобществленные электроны располагаются на более низкой по энергии связывающей МО:

Образование связи

Ковалентная связь (атомная связь, гомеополярная связь) - связь между двумя атомами за счёт обобществления (electron sharing) двух электронов - по одному от каждого атома:

A. + В. -> А: В

По этой причине гомеополярная связь имеет направленный характер. Пара электронов, осуществляющая связь, принадлежит одновременно обоим связываемым атомам, например:

.. .. ..
: Cl : Cl : H : O : H
.. .. ..

Виды ковалентной связи

Существуют три вида ковалентной химической связи, отличающихся механизмом ее образования:

1. Простая ковалентная связь . Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными. Если атомы, образующие простую ковалентную связь одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующиеся связь в равной степени владеют обобществленной электронной парой, такая связь называется неполярной ковалентной связью. Если атомы различны, тогда степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов, атом с большей электроотрицательностью в большей степени обладает парой электронов связи, и поэтому его истинный заряд имеет отрицательный знак, атом с меньшей электроотрицательностью приобретает соответственно такой же по величине заряд, но с положительным знаком.

Сигма (σ)-, пи (π )-связи - приближенное описание видов ковалентных связей в молекулах органических соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании π -связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен , ацетилен и бензол .

В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвертого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π -связью.

В линейной молекуле ацетилена

Н-С≡С-Н (Н: С::: С: Н)

имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две π -связи между этими же атомами углерода. Две π -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

Все шесть атомов углерода циклической молекулы бензола С 6 H 6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвертых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные π -связи, а единая π -электронная система из шести электронов, общая для всех атомов углерода. Связи между атомами углерода в молекуле бензола совершенно одинаковые.

Ковалентная связь образуется в результате обобществления электронов (с образованием общих электронных пар), которое происходит в ходе перекрывания электронных облаков. В образовании ковалентной связи участвуют электронные облака двух атомов. Различают две основные разновидности ковалентной связи:

  • Ковалентная неполярная связь образуется между атомами неметалла одного и того же химического элемента. Такую связь имеют простые вещества , например О 2 ; N 2 ; C 12 .
  • Ковалентная полярная связь образуется между атомами различных неметаллов.

См. также

Литература

  • «Химический энциклопедический словарь», М., «Советская энциклопедия», 1983, с.264.
Органическая химия
Список органических соединений

Wikimedia Foundation . 2010 .

  • Большая политехническая энциклопедия
  • ХИМИЧЕСКАЯ СВЯЗЬ, механизм, за счет которого атомы соединяются и образуют молекулы. Имеется несколько типов такой связи, основанных либо на притяжении противоположных зарядов, либо на образовании устойчивых конфигураций путем обмена электронами.… … Научно-технический энциклопедический словарь

    Химическая связь - ХИМИЧЕСКАЯ СВЯЗЬ, взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Действующие при образовании химической связи силы имеют в основном электрическую природу. Образование химической связи сопровождается перестройкой… … Иллюстрированный энциклопедический словарь

    Взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют Х. с. Валентность атома (о чём подробнее сказано ниже) показывает число связей … Большая советская энциклопедия

    химическая связь - взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атома показывает число связей, образованных данным атомом с соседними. Термин «химическое строение» ввел академик А. М. Бутлеров в… … Энциклопедический словарь по металлургии

    Ионная связь прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Примером может служить соединение CsF … Википедия

    Химическая связь явление взаимодействия атомов, обусловленное перекрыванием электронных облаков, связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861… … Википедия

Крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными: гелий, неон, аргон, криптон, ксенон и радон. Чаще же всего химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки. Такие объединения атомов могут насчитывать несколько единиц, сотен, тысяч или даже больше атомов. Сила, которая удерживает эти атомы в составе таких группировок, называется химическая связь .

Другими словами, можно сказать, что химической связью называют взаимодействие, которое обеспечивает связь отдельных атомов в более сложные структуры (молекулы, ионы, радикалы, кристаллы и др.).

Причиной образования химической связи является то, что энергия более сложных структур меньше суммарной энергии отдельных, образующих ее атомов.

Так, в частности, если при взаимодействии атомов X и Y образуется молекула XY, это означает, что внутренняя энергия молекул этого вещества ниже, чем внутренняя энергия отдельных атомов, из которых оно образовалось:

E(XY) < E(X) + E(Y)

По этой причине при образовании химических связей между отдельными атомами выделятся энергия.

В образовании химических связей принимают участие электроны внешнего электронного слоя с наименьшей энергией связи с ядром, называемые валентными . Например, у бора таковыми являются электроны 2 энергетического уровня – 2 электрона на 2s- орбитали и 1 на 2p -орбитали:

При образовании химической связи каждый атом стремится получить электронную конфигурацию атомов благородных газов, т.е. чтобы в его внешнем электронном слое было 8 электронов (2 для элементов первого периода). Это явление получило название правила октета.

Достижение атомами электронной конфигурации благородного газа возможно, если изначально одиночные атомы сделают часть своих валентных электронов общими для других атомов. При этом образуются общие электронные пары.

В зависимости от степени обобществления электронов можно выделить ковалентную, ионную и металлическую связи.

Ковалентная связь

Ковалентная связь возникает чаще всего между атомами элементов неметаллов. Если атомы неметаллов, образующие ковалентную связь, относятся к разным химическим элементам, такую связь называют ковалентной полярной. Причина такого названия кроется в том, что атомы разных элементов имеют и различную способность притягивать к себе общую электронную пару. Очевидно, что это приводит к смещению общей электронной пары в сторону одного из атомов, в результате чего на нем формируется частичный отрицательный заряд. В свою очередь, на другом атоме формируется частичный положительный заряд. Например, в молекуле хлороводорода электронная пара смещена от атома водорода к атому хлора:

Примеры веществ с ковалентной полярной связью:

СCl 4 , H 2 S, CO 2 , NH 3 , SiO 2 и т.д.

Ковалентная неполярная связь образуется между атомами неметаллов одного химического элемента. Поскольку атомы идентичны, одинакова и их способность оттягивать на себя общие электроны. В связи с этим смещения электронной пары не наблюдается:

Вышеописанный механизм образования ковалентной связи, когда оба атома предоставляют электроны для образования общих электронных пар, называется обменным.

Также существует и донорно-акцепторный механизм.

При образовании ковалентной связи по донорно-акцепторному механизму общая электронная пара образуется за счет заполненной орбитали одного атома (с двумя электронами) и пустой орбитали другого атома. Атом, предоставляющий неподеленную электронную пару, называют донором, а атом со свободной орбиталью – акцептором. В качестве доноров электронных пар выступают атомы, имеющие спаренные электроны, например N, O, P, S.

Например, по донорно-акцепторному механизму происходит образование четвертой ковалентной связи N-H в катионе аммония NH 4 + :

Помимо полярности ковалентные связи также характеризуются энергией. Энергией связи называют минимальную энергию, необходимую для разрыва связи между атомами.

Энергия связи уменьшается с ростом радиусов связываемых атомов. Так, как мы знаем, атомные радиусы увеличиваются вниз по подгруппам, можно, например, сделать вывод о том, что прочность связи галоген-водород увеличивается в ряду:

HI < HBr < HCl < HF

Также энергия связи зависит от ее кратности – чем больше кратность связи, тем больше ее энергия. Под кратностью связи понимается количество общих электронных пар между двумя атомами.

Ионная связь

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи. Если в ковалентной-полярной связи общая электронная пара смещена частично к одному из пары атомов, то в ионной она практически полностью «отдана» одному из атомов. Атом, отдавший электрон(ы), приобретает положительный заряд и становится катионом , а атом, забравший у него электроны, приобретает отрицательный заряд и становится анионом .

Таким образом, ионная связь — это связь, образованная за счет электростатического притяжения катионов к анионам.

Образование такого типа связи характерно при взаимодействии атомов типичных металлов и типичных неметаллов.

Например, фторид калия. Катион калия получается в результате отрыва от нейтрального атома одного электрона, а ион фтора образуется при присоединении к атому фтора одного электрона:

Между получившимися ионами возникает сила электростатического притяжения, в результате чего образуется ионное соединение.

При образовании химической связи электроны от атома натрия перешли к атому хлора и образовались противоположно заряженные ионы, которые имеют завершенный внешний энергетический уровень.

Установлено, что электроны от атома металла не отрываются полностью, а лишь смещаются в сторону атома хлора, как в ковалентной связи.

Большинство бинарных соединений, которые содержат атомы металлов, являются ионными. Например, оксиды, галогениды, сульфиды, нитриды.

Ионная связь возникает также между простыми катионами и простыми анионами (F − , Cl − , S 2-), а также между простыми катионами и сложными анионами (NO 3 − , SO 4 2- , PO 4 3- , OH −). Поэтому к ионным соединениям относят соли и основания (Na 2 SO 4 , Cu(NO 3) 2 , (NH 4) 2 SO 4), Ca(OH) 2 , NaOH)

Металлическая связь

Данный тип связи образуется в металлах.

У атомов всех металлов на внешнем электронном слое присутствуют электроны, имеющие низкую энергию связи с ядром атома. Для большинства металлов, энергетически выгодным является процесс потери внешних электронов.

Ввиду такого слабого взаимодействия с ядром эти электроны в металлах весьма подвижны и в каждом кристалле металла непрерывно происходит следующий процесс:

М 0 — ne − = M n + ,

где М 0 – нейтральный атом металла, а M n + катион этого же металла. На рисунке ниже представлена иллюстрация происходящих процессов.

То есть по кристаллу металла «носятся» электроны, отсоединяясь от одного атома металла, образуя из него катион, присоединяясь к другому катиону, образуя нейтральный атом. Такое явление получило название “электронный ветер”, а совокупность свободных электронов в кристалле атома неметалла назвали “электронный газ”. Подобный тип взаимодействия между атомами металлов назвали металлической связью.

Водородная связь

Если атом водорода в каком-либо веществе связан с элементом с высокой электроотрицательностью (азотом, кислородом или фтором), для такого вещества характерно такое явление, как водородная связь.

Поскольку атом водорода связан с электроотрицательным атомом, на атоме водорода образуется частичный положительный заряд, а на атоме электроотрицательного элемента — частичный отрицательный. В связи с этим становится возможным электростатическое притяжения между частично положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой. Например водородная связь наблюдается для молекул воды:

Именно водородной связью объясняется аномально высокая температура плавления воды. Кроме воды, также прочные водородные связи образуются в таких веществах, как фтороводород, аммиак, кислородсодержащие кислоты, фенолы, спирты, амины.

Важными количественными характеристиками ковалентной связи являются энергия связи , ее длина и дипольный момент .

Энергия связи – энергия, выделяющаяся при ее образовании, или необходимая для разъединения двух связанных атомов. Энергия связи характеризует ее прочность.

Длина связи – расстояние между центрами связанных атомов. Чем меньше длина, тем прочнее химическая связь.

Дипольный момент связи (μ) – векторная величина, характеризующая полярность связи (измеряется в дебаях D или кулон-метрах: 1D = 3,4·10 -30 Кл·м).

Длина вектора равна произведению длины связи l на эффективный заряд q , который приобретают атомы при смещении электронной плотности: | μ | = l · q .Вектор дипольного момента направлен от положительного заряда к отрицательному. При векторном сложении дипольных моментов всех связей получают дипольный момент молекулы.
На характеристики связей влияет их кратность:

Ковалентная связь (атомная связь, гомеополярная связь) - химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой .

Термин ковалентная связь был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году . Этот термин относился к химической связи, обусловленной совместным обладанием электронами, в отличие от металлической связи, в которой электроны были свободными, или от ионной связи, в которой один из атомов отдавал электрон и становилсякатионом, а другой атом принимал электрон и становился анионом.

Позднее (1927 год) Ф.Лондон и В.Гайтлер на примере молекулы водорода дали первое описание ковалентной связи с точки зрения квантовой механики.

С учётом статистической интерпретации волновой функции М.Борна плотность вероятности нахождения связывающих электронов концентрируется в пространстве между ядрами молекулы (рис.1). В теории отталкивания электронных пар рассматриваются геометрические размеры этих пар. Так, для элементов каждого периода существует некоторый средний радиус электронной пары (Å):

0,6 для элементов вплоть до неона; 0,75 для элементов вплоть до аргона; 0,75 для элементов вплоть до криптона и 0,8 для элементов вплоть до ксенона.

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Однако, дважды лауреат Нобелевской премии Л. Полинг указывал, что «в некоторых молекулах имеются ковалентные связи, обусловленные одним или тремя электронами вместо общей пары» . Одноэлектронная химическая связь реализуется в молекулярном ионе водорода H 2 + .

Молекулярный ион водорода H 2 + содержит два протона и один электрон. Единственный электрон молекулярной системы компенсирует электростатическое отталкивание двух протонов и удерживает их на расстоянии 1,06 Å (длина химической связи H 2 +). Центр электронной плотности электронного облака молекулярной системы равноудалён от обоих протонов на боровский радиус α 0 =0,53 Å и является центром симметрии молекулярного иона водорода H 2 + .

9- вопрос) Способы образования ковалентной связи. Приведите примеры.

Способы образования ковалентной связи

Существуют два главных способа образования ковалентной связи *.

1) Электронная пара, образующая связь, может образоваться за счет неспаренных электронов, имеющихся в невозбужденныхатомах.

Однако число ковалентных связей может быть больше числа неспаренных электронов. Например, в невозбужденном состоянии (которое называется также основным состоянием) атом углерода имеет два неспаренных электрона, однако для него характерны соединения, в которых он образует четыре ковалентные связи. Это оказывается возможным в результате возбуждения атома. При этом один из s-электронов переходит на p-подуровень:

Увеличение числа создаваемых ковалентных связей сопровождается выделением большего количества энергии, чем затрачивается на возбуждение атома. Поскольку валентность атома зависит от числа неспаренных электронов, возбуждение приводит к повышению валентности. У атомов азота, кислорода, фтора количество неспаренных электронов не увеличивается, т.к. в пределах второго уровня нет свободных орбиталей *, а перемещение электронов на третий квантовый уровень требует значительно большей энергии, чем та, которая выделилась бы при образовании дополнительных связей. Таким образом, при возбуждении атома переходы электронов на свободныеорбитали возможны только в пределах одного энергетического уровня .

Элементы 3-го периода – фосфор, сера, хлор – могут проявлять валентность, равную номеру группы. Это достигается возбуждением атомов с переходом 3s- и 3p-электронов на вакантные орбитали 3d-подуровня:

P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 (валентность 5)

S* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 (валентность 6)

Cl* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 3 (валентность 7)

В приведенных выше электронных формулах * возбужденных атомов подчеркнуты подуровни *, содержащие только неспаренныеэлектроны. На примере атома хлора легко показать, что валентность может быть переменной:

В отличие от хлора, валентность атома F постоянна и равна 1, т.к. на валентном (втором) энергетическом уровне отсутствуюторбитали d-подуровня и другие вакантные орбитали.

2) Ковалентные связи могут образовываться за счет спаренных электронов, имеющихся на внешнем электронном слое атома. В этом случае второй атом должен иметь на внешнем слое свободную орбиталь. Например, образование иона аммония из молекулы аммиакаи иона водорода можно отобразить схемой:

Атом, предоставляющий свою электронную пару для образования ковалентной связи *, называется донором, а атом, предоставляющий пустую орбиталь, – акцептором. Ковалентная связь, образованная таким способом, называется донорно-акцепторной связью. В катионе аммония эта связь по своим свойствам абсолютно идентична трем другим ковалентным связям, образованным первым способом, поэтому термин “донорно-акцепторная” обозначает не какой-то особый вид связи, а лишь способ ее образования.

10-вопрос) Кислотно-основное взаимодействие – реакции нейтрализации. Кислые и основные соли. Приведите примеры.

NaOH + HCl = NaCl + H2O - реакция нейтрализации
NaOH + H2SO4 = NaHSO4 + H2O - образование кислой соли гидросульфата натрия, кислые соли могут образовывать иногоосновные кислоты, например Н3РО4 может образовать 2 кислые соли NaH2PO4 . Na2HPO4 . -кислые соли - продукт неполного замещения катионов водорода в кислоте.
Al(OH)3 + 3HCl = AlCl3 + 3H2O - средняя соль
Al(OH)3 + 2HCl = Cl2 + 2H2O - гидроксохлорид алюминия - основная соль
Al(OH)3 + HCl = Cl + H2O - дигидроксохлорид алюминия
Основная соль - продукт неполного замещения гидроксильных групп основания анионами кислотного остатка.

Теории кислот и оснований - совокупность фундаментальных физико-химических представлений, описывающих природу и свойства кислот и оснований. Все они вводят определения кислот и оснований - двух классов веществ, реагирующих между собой. Задача теории - предсказание продуктов реакции между кислотой и основанием и возможности её протекания, для чего используются количественные характеристики силы кислоты и основания. Различия между теориями лежат в определениями кислот и оснований, характеристики их силы и, как следствие - в правилах предсказания продуктов реакции между ними. Все они имеют свою область применимости, каковые области частично пересекаются.

Кислотно-основные взаимодействия чрезвычайно распространенены в природе и находят широкое применение в научной и производственной практике. Теоретические представления о кислотах и основаниях имеют важное значение в формировании всех концептуальных систем химии и оказывают разностороннее влияние на развитие многих теоретических концепций во всех основных химических дисциплинах.

На основе современной теории кислот и оснований разработаны такие разделы химических наук, как химия водных и неводных растворов электролитов, рН-метрия в неводных средах, гомо- и гетерогенный кислотно-основный катализ, теория функций кислотности и многие другие.

11- вопрос) Ионная связь, ее свойства, приведите примеры.

В отличие от ковалентной связи ионная связь не обладает насыщаемостью.
Прочность ионных связей.
Вещества с ионными связями в молекулах, как правило, имеют более высокие температуры кипения и плавления.

Ионная связь - очень прочная химическая связь, образующаяся между атомами с большой разностью (>1,5 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %. Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na 1s2 2s2 2p 6 3s1; 17 Cl 1s2 2s2 2p6 Зs2 3р5. Это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. - l е -> Na+ ион натрия, устойчивая восьми электронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня. :Cl + 1е --> .Cl - ион хлора, устойчивая восьми электронная оболочка. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение. Ионная связь - крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу. Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу), то общая электронная параполностью переходит к атому с большей ЭО. Результатом этого является образование соединения противоположно заряженных ионов:

Между образовавшимися ионами возникает электростатическое притяжение, которое называется ионной связью. Вернее, такой взгляд удобен. На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде, обычно на деле связь носит частично ионный, а частично ковалентный характер. В то же время связь сложных молекулярных ионов часто может считаться чисто ионной. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

Характеристикой подобных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.). Это происходит из-за заряженности частей молекулы. При этом диполи растворителя притягиваются к заряженным концам молекулы, и, в результате Броуновского движения, «растаскивают» молекулу вещества на части и окружают их, не давая соединиться вновь. В итоге получаются ионы окружённые диполями растворителя.

При растворении подобных соединений, как правило, выделяется энергия, так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион. Исключения составляют многие соли азотной кислоты (нитраты), которые при растворении поглощают тепло (растворы охлаждаются). Последний факт объясняется на основе законов, которые рассматриваются в физической химии.

примеры: (MgS, K2CO3), основания(LiOH, Ca(OH)2), основные оксиды(BaO, Na2O)
тип решетки- металлическая

12) Обменные реакции в растворах. Приведите примеры.

В практически необратимых реакциях равновесие сильно смещено в сторону образования продуктов реакции.

Часто встречаются процессы при которых слабые электролиты или малорастворимые соединения входят в число исходных и в число конечных продуктов реакции. Например,

HCN(p) + CH 3 COO - (p)↔ CH 3 COOH(p) + CN - (p) (1), ΔG˚=43кДж

NH 4 OH(p) + H + (p) ↔ H 2 O(ж) + NH 4 + (p) (2) ΔG˚= -84кДж

слабые электролиты есть и в левой и в правой части уравнений.

В этих случаях равновесие обратимого процесса смещается в сторону образования вещества, обладающего меньшей Кдиссоц.

В реакции (1) равновесие смещено влево K HCN = 4,9 · 10 -10 < K CH 3 COOH = 1,8 · 10 -5 , в реакции (2) – сильно сдвинуто вправо (K H 2 O =1,8 · 10 -16 < K NH 4 OH = 1,8 · 10 -5).

Примерами процессов в уравнении реакции которых слева и справа входят труднорастворимые вещества , могут служить:

AgCl(k)↓ + NaI(p) ↔ AgI↓(k) + NaCl(p) (1) ΔG˚= - 54кДж

BaCO 3 ↓(k) + Na 2 SO 4 (p) ↔ BaSO 4 ↓(k) + Na 2 CO 3 (p) (2) ΔG˚≈ 0

Равновесие смещается в сторону образования менее растворимого соединения. В реакции (1) равновесие смещено вправо, т.к. ПРAgI=1,1·10 -16 < ПРAgCl =1,8·

10 -10 . В реакции (2) равновесие лишь несколько сдвинуто в сторону BaSO 4

(ПР BaCO 3 = 4,9·10 -9 > ПР BaSO 4 =1,08·10 -10).

Встречаются процессы в уравнениях которых с одной стороны равенства имеется малорастворимое соединение, а с другой стороны – слабый электролит. Так, равновесие в системе

AgCN(k)↓ + H + (p) ↔ HCN(p) + Ag + (p) ΔG˚= - 46кДж

значительно смещено вправо, поскольку ион СN - более прочно связывается в молекулу очень слабого электролита HCN, чем в молекулу малорастворимого вещества AgCN. Поэтому осадок AgCN растворяется при добавлении азотной кислоты.

Ковалентная связь осуществляется обобществленными валентными электронами, находящимися на общей для двух соседних атомов связывающей орбитали (см. разд. 2.2.1). При этом в случае элементарных веществ каждый из атомов «отдает» на связь одинаковое число валентных электронов и достраивает свою валентную оболочку до полностью заполненной за счет связывающих электронов ближайших соседних атомов в решетке. С этим свойством насыщаемости ковалентной связи мы познакомились на примере молекулы водорода. Его следствием является правило, установленное Юм-Розери. Согласно ему для кристаллов элементарных веществ, в которых реализуется преимущественно ковалентная связь, выполняется следующее соотношение между координационным числом Z к и номером группы N , где расположен данный элемент:

Z к = 8 − N . Структура элементарных полупроводников (преимущественная связь - ковалентная) задается этим простым эмпирическим правилом и направлением ковалентной связи.

Направление ковалентной связи определяется распределением электронной плотности в кристалле, которое можно установить с помощью, например, рентгеновских данных. Они свидетельствуют, что в кристаллах с ковалентной связью электронная плотность валентных электронов существенно неравномерно распределена в пространстве. В направлениях, являющихся кратчайшими для двух соседних атомов, электронная плотность выше, чем в других направлениях. Это означает, что валентные электроны как бы локализованы в пространстве и образуют «электронные мостики», то есть ковалентная связь имеет резко выраженный направленный характер . Характер распределения электронной плотности при образовании ковалентной связи зависит от конкретной электронной структуры взаимодействующих атомов.

Так как ковалентная химическая связь в отличие от других типов химической связи имеет локализованный характер, то она определяется не только энергией связи, но имеет и геометрические характеристики. Геометрическими характеристиками ковалентной связи являются ее длина и углы между связями в молекуле или кристалле. Длиной ковалентной

химической связи называется расстояние между ядрами атомов, объединенных ковалентной связью, в кристалле. Она зависит от размеров взаимодействующих атомов и степени перекрытия их электронных облаков. Длину связи и углы между связями определяют экспериментально с помощью методов молекулярной спектроскопии, дифракции рентгеновских лучей и другими методами.

Свойство направленности ковалентной связи рассмотрим на примере образования химической связи в алмазе.9 При этом будем руководствоваться правилами, составляющими содержание теории направленных валентностей.

1. Ковалентная единичная связь образуется при взаимодействии двух электронов с противоположными спинами, принадлежащих разным атомам.

2. Направление ковалентной связи должно отвечать направлению, в котором орбитали данного валентного электрона в максимальной степени перекрывается орбиталями другого спаренного с ним валентного электрона, принадлежащего соседнему атому.

Следует иметь в виду, что в ряде случаев форма орбиталей валентных электронов, участвующих в образовании связи, изменяется незначительно, а в ряде случаев происходит ее резкое изменение. В последнем случае возникают смешанные, так называемые гибридные орбитали .

В алмазе, состоящем из атомов углерода, как хорошо известно, реализуется ковалентная химическая связь. Электронная конфигурация валентной оболочки атома углерода в невозбужденном состоянии - 2s 22p 2. На 1s -орбитали и на 2s -орбитали находятся по два спаренных электрона, спины которых антипараллельны. Валентными оказываются две 2p -орбитали, на которых располагается по одному электрону, способному принимать участие в образовании химической связи. Эти 2p -орбитали

образуют между собой угол в 90◦. Таким образом, углерод в своих соединениях должен быть двухвалентным и формировать связи, между которыми прямой угол.

Однако, как показывают экспериментальные данные, в большинстве своих соединений углерод четырехвалентен и все четыре связи углерода одинаково прочны и имеют одинаковую ориентацию относительно друг

друга: угол между связями равен 109◦28∗. Это обстоятельство объясняется гибридизацией орбиталей, происходящей в два этапа. Сначала атом углерода переходит из основного состояния в возбужденное, при котором один из электронов с заполненной 2s 2-орбитали переходит на

9 Ковалентная связь в молекуле водорода не обладает свойством направленности из-за сферически симметричного распределения электронной плотности в s -состояниях.

Рис. 2.10. Схема гибридизации s и p -электронных облаков и пространственная ориентация sp 3 -гибридов.

пустую 2p -орбиталь. Далее происходит «перемешивание» четырех волновых функций и образование четырех новых одинаковых волновых функций, которые не являются ни s -, ни p -функциями. Это - гибридные sp 3-функции. Они эквивалентны и имеют ориентацию, показанную на рис. 2.10. Таким образом, в результирующем состоянии атом углерода в алмазе имеет четыре неспаренных электрона. Направления максимальной плотности обменных облаков, как видно из рис. 2.12, сосредоточены вдоль пространственных диагоналей куба <111>. Атом с четырьмя соседями образует правильный тетраэдр, а из совокупности тетраэдров строится «бесконечная ковалентная молекула».

Прочность химической связи зависит от степени перекрытия орбиталей валентных электронов: чем больше перекрытие, тем прочнее связь. Расчеты показывают, что перекрытие электронных оболочек соединяющихся атомов в случае гибридных sp 3-орбиталей оказывается существенно больше, чем в случае негибридных s и p -орбиталей. Хотя гибридизованным состояниям соответствует более высокая энергия электронов в атоме, чем негибридизованным, тем не менее полная энергия кристалла оказывается ниже в случае образования связи из sp 3-гибридов, поэтому гибридизация и оказывается энергетически выгодной.

В образовании ковалентной связи могут принимать участие s -, p -, d и f -орбитали. Если происходит гибридизация при образовании связи, то в зависимости от того, сколько и каких орбит гибридизуется, различают sp -, sp 2-, dsp 2-, sp d 2sp 3-гибридные орбитали (рис. 2.11).

Таким образом, структура ковалентных кристаллов определяется правилом Юм-Розери, дающим число ближайших соседей, необходимых для полного насыщения химической связи, и направлением химической связи, которое может быть установлено из анализа волновых функций ва

Рис. 2.11. Пространственная ориентация sp -, sp 2 -, dsp 2 -, sp 3 и d 2 sp 3-гибридных орбиталей.

лентных электронов или экспериментально. Характерная величина энергии ковалентной связи составляет величину порядка 5–7 эВ. В полупроводниковых материалах прослеживаются следующие общие закономерности в изменении свойств при изменении энергии связи. С увеличением энергии связи между атомами уменьшается период кристаллической решетки, возрастают температура плавления и ширина запрещенной зоны.

Наиболее характерные свойства простых кристаллов, в которых реализуется преимущественно один из четырех типов химической связи, приведены в табл. 2.2.

Таблица 2.2. Свойства четырех групп твердых тел, отличающихся типами межатомных связей.

Тип межатомной связи

Характеристика и энергия связи

Ненаправленная и ненасыщенная, сильная связь; 5–7 эВ на пару ионов.

Направленная

и насыщенная, сильная связь; 5–7 эВ на атом.

Ненаправленная и ненасыщенная связь; около

3.5 эВ на атом.

Ненаправленная и ненасыщенная, слабая, короткодействующая

связь; ≈0.1 эВ на

Ионная Ковалентная Металлическая Ван-дер-Ваальсова

Структурные свойства

Крупные анионы образуют структуры с плотной упаковкой, в пустотах которых размещены катионы (Z к = 8, 6, 4 и 3).

Структуры с неплотной упаковкой решетки (например, Z к = 4) и низкой плотностью.

Z к = 12 и 8) и высокой плотностью.

Компактные кристаллические структуры с плотнейшей упаковкой (Z к = 12) и высокой плотностью.

Тепловые свойства

Довольно высокие температуры плавления. Низкий коэффициент расширения.

Высокие температуры плавления. Низкий коэффициент расширения.

Различные температуры плавления.

Низкие температуры плавления. Высокий коэффициент расширения.

Электрические свойства

Изоляторы. Проводимость носит в основном ионный характер и увеличивается с ростом температуры.

Электронный тип проводимости (два типа носителей). Активационная зависимость проводимости от температуры.

Проводники. Основной тип проводимости - электронный. Проводимость с ростом температуры уменьшается.

Изоляторы.

Оптические свойства

Прозрачны для электромагнитного излучения от низких частот до края поглощения. Обычно прозрачны в видимой области спектра.

Прозрачны для электромагнитное излучения от низких частот до края поглощения.

Непрозрачны для электромагнитных волн от самых низких частот вплоть до середины ультрафиолетовой области; хорошо отражают свет.

Прозрачны для электромагнитного излучения от низких частот до дальней ультрафиолетовой области.

Ионная Ковалентная Металлическая Ван-дер-Ваальсова

Зонная структура

зона отделена

от следующей пустой зоны проводимости широкой запрещенной зоной (Eg > 2–3 эВ).

Полностью заполненная верхняя валентная

зона отделена

от следующей пустой зоны проводимости запрещенной зоной Eg < 2–3 эВ.

Зона проводимости частично заполнена.

Полностью заполненная верхняя валентная

зона отделена

от следующей пустой зоны проводимости очень широкой запрещенной зоной.

Понравилась статья? Поделитесь с друзьями!